15 research outputs found

    Online Set Cover with Set Requests

    Get PDF
    We consider a generic online allocation problem that generalizes the classical online set cover framework by considering requests comprising a set of elements rather than a single element. This problem has multiple applications in cloud computing, crowd sourcing, facility planning, etc. Formally, it is an online covering problem where each online step comprises an offline covering problem. In addition, the covering sets are capacitated, leading to packing constraints. We give a randomized algorithm for this problem that has a nearly tight competitive ratio in both objectives: overall cost and maximum capacity violation. Our main technical tool is an online algorithm for packing/covering LPs with nested constraints, which may be of interest in other applications as well

    Revenue Maximization in Transportation Networks

    Get PDF
    We study the joint optimization problem of pricing trips in a transportation network and serving the induced demands by routing a fleet of available service vehicles to maximize revenue. Our framework encompasses applications that include traditional transportation networks (e.g., airplanes, buses) and their more modern counterparts (e.g., ride-sharing systems). We describe a simple combinatorial model, in which each edge in the network is endowed with a curve that gives the demand for traveling between its endpoints at any given price. We are supplied with a number of vehicles and a time budget to serve the demands induced by the prices that we set, seeking to maximize revenue. We first focus on a (preliminary) special case of our model with unit distances and unit time horizon. We show that this version of the problem can be solved optimally in polynomial time. Switching to the general case of our model, we first present a two-stage approach that separately optimizes for prices and routes, achieving a logarithmic approximation to revenue in the process. Next, using the insights gathered in the first two results, we present a constant factor approximation algorithm that jointly optimizes for prices and routes for the supply vehicles. Finally, we discuss how our algorithms can handle capacitated vehicles, impatient demands, and selfish (wage-maximizing) drivers

    Maximizing Revenue in the Presence of Intermediaries

    Get PDF
    We study the mechanism design problem of selling kk items to unit-demand buyers with private valuations for the items. A buyer either participates directly in the auction or is represented by an intermediary, who represents a subset of buyers. Our goal is to design robust mechanisms that are independent of the demand structure (i.e. how the buyers are partitioned across intermediaries), and perform well under a wide variety of possible contracts between intermediaries and buyers. We first study the case of kk identical items where each buyer draws its private valuation for an item i.i.d. from a known λ\lambda-regular distribution. We construct a robust mechanism that, independent of the demand structure and under certain conditions on the contracts between intermediaries and buyers, obtains a constant factor of the revenue that the mechanism designer could obtain had she known the buyers' valuations. In other words, our mechanism's expected revenue achieves a constant factor of the optimal welfare, regardless of the demand structure. Our mechanism is a simple posted-price mechanism that sets a take-it-or-leave-it per-item price that depends on kk and the total number of buyers, but does not depend on the demand structure or the downstream contracts. Next we generalize our result to the case when the items are not identical. We assume that the item valuations are separable. For this case, we design a mechanism that obtains at least a constant fraction of the optimal welfare, by using a menu of posted prices. This mechanism is also independent of the demand structure, but makes a relatively stronger assumption on the contracts between intermediaries and buyers, namely that each intermediary prefers outcomes with a higher sum of utilities of the subset of buyers represented by it

    Online Set Cover with Set Requests *

    Get PDF
    Abstract We consider a generic online allocation problem that generalizes the classical online set cover framework by considering requests comprising a set of elements rather than a single element. This problem has multiple applications in cloud computing, crowd sourcing, facility planning, etc. Formally, it is an online covering problem where each online step comprises an offline covering problem. In addition, the covering sets are capacitated, leading to packing constraints. We give a randomized algorithm for this problem that has a nearly tight competitive ratio in both objectives: overall cost and maximum capacity violation. Our main technical tool is an online algorithm for packing/covering LPs with nested constraints, which may be of interest in other applications as well

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie

    Allocation of Advertisement Extensions & Formats

    Get PDF
    This document describes a process of optimizing the selection of a budget-constrained advertiser\u27s formats when allocating the budget of a budget-constrained advertiser. Such optimization is performed by selectively choosing which formats to allocate to this advertiser based on the advertiser\u27s budget. In particular, this document describes allocating formats to budget-constrained advertisers in advertising auctions to create value for the advertisers and an advertiser manager
    corecore